Pr— UNCLASSIFIED L. .

3

., SECURLTY CLASSI/ICATION OF WIS PAGE (Wher Date Ertered . S b I//:::f\\
> RLAZ DISTRUCTIONS K
, REPORT DOCUMENTATION PAGE prrizpameemons | OK

1. REPORT NUMBLR 12. GOVY ACCESSION WO. [3. RECIPIENT'S CATALOC MUMBER
4. TITLE (anc Subtitie) 5. TYPt OF REPORY § PERIOD COVLRLD

‘D” Ada Compiler Validation Summary Report: 13 January .1989-1 December 19°¢
R.R. Software, Inc., JANUS/Ada 2.1.1,” Comoaq Deskpro 6. PERFORMING DRG. MEPORT MMELR

(«)] 386/25 (Host & Target) with Pharlap Dos Extender - JORG. Wit

2401131110022

== | 7. AUTHORis) 8. CONTRAIT DR GRANT NUMELR(s)

v | ¥right-Patterson AFB

N Davton, OH, USA

.gl: . PERFORMING ORGANIZATION AND ADDRLSS 1C. PROGRAM ELEMINT, PRCILZT. TASK

AREA & WORK UNIT MUMEERS
I Wright-Patterson AFB
D Dayton, OH, USA
< 1kdco~:;o;_u~tc ti;ﬂct NAME aggfapouss 12. REPORY DATE
a Join rogram ice i
United States Department of Defense bl 28
wWashington, DC 20301-3081 -
D
14. MONITORING AGENZY NAML & ADDRESS(/f different from Controliing Office) 15, SECURITY CLASS (of thisreponr)
UNCLASSIF..D

Wright-—Patterson AFB 152, gﬁtt‘SS"ICAYION-'DCN\SRADING
Dayton, OH, USA enboolt N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBLIION STRTEWINT (of the abstractentered in B:ock 2C 1o Herent from Report)

UNCLASSIFIED DTlC

ELECTE
18. SUPP_EMINTARY NOTES AUGO 4 1989
16. KEYuIRIS (Continue onreverse 5:0¢ :f necessary andident:fy by biock number) AR CAE -
Aca Programrming language, Ada Compiler Validation Summary Repcort, Ada

Compiler Valicdation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRRLT (Continue onreverse side if necessary and dentify by biock number)

JANUS/Ada 2.1.1, R.R. Software, Inc., Wright-Patterson AFB, Compag Deskpro 386/23
under MS DOS 3.31 with Pharlap Dos Extender (Host & Target), ACVC 1.10

-~ !’ﬂ

SR

,

. -

DD U 1473 go:Tion OF 3 MO 65 IS OBSOLETE
1 Jan 73 S/N 0102-1F-014-8601 UNCLASSIFIED
SICURITY CLASSITIC > 10 Of THIS PAGL (when Date £ntered)
-

: \a—"

.!\

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113wW1.10022

Host: Compaq Deskpro 385/25 under MS DOS 3.31
with Pharlap Dos Extender

Target: Compaq Deskpro 386/25 under MS DOS 3.31
with Pharlap Dos Extender

Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

,réaéé;’ p/7 ;;:Zia~\.

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFR, OH U5U433-6503

A ;-
, p /

//v

~— {l; — i 1,,‘,/&,/__—’————\

Ada Validation Organ;zatlon

r. John F. Xraper

Institute for Defense Analyses
Alexandria VA 22371

Y/ A T
Ada Joint Program 0ffice
William S. Ritchie

Acting Director

Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-225.0289
88-09-23-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890113W1.10022
R.R. Software, Inc.
JANUS/Ada 2.1.1
Compaq Deskpro 386/25 Host and Target with Pharlap Dos Extender

Completion of On-Site Testing:
13 January 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Pattersor 8FB, OH U5433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113W1.10022

Host: Compaq Deskpro 386/25 under MS DOS 3.31
with Pharlap Dos Extender

Target: Compaq Deskpro 386/25 under MS DOS 3.31
with Pharlap Dos Extender

Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Mo (2 K

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL

Wright-Patterson AFB, OH U5U433-6503

Ada Validation Organizatio

Dr. John ¥. Xramer

Institute for Defense Ana

Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense
Washington DC 20301

.
A\
Y

DTIC T. =
Unannows: -
Justifieation]

Aecession For ’
L
o
a

By
Distribution/
Avallablility Codes

" |Avail and/or
Dist Special

ol }

CHAPTER 1

— — ok A
. .
N EWN o

CHAPTER 2

CHAPTER 3

.

WWL.JJU)WWWWU)W
N VIO W
.

APPENDIX A

APPENDIX B

APPENDIX ¢

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT .

REFERENCES . ¢« v ¢« ¢ ¢ ¢ v ¢ ¢ o o o o
DEFINITION OF TERMS « ¢ ¢ ¢ «
ACVC TEST CLASSES '« v & v 4 v o ¢ o o &

CONFIGURATION INFORMATION

CONFIGURATION TESTED + « s o o o o o « &
IMPLEMENTATION CHARACTERISTICS
TEST INFORMATION

TEST RESULTS o« e e e e e

SUMMARY OF TEST RESULTS BY CLASS

SUMMARY OF TEST RESULTS BY CHAPTER . . .

WITHDRAWN TESTS . « v ¢ o o o o o
INAPPLICABLE TESTS

TEST, PROCESSING, AND “VALUATION MODIFICATIONS

ADDITIONAL TESTI & INFORMATION . . .

Prevalidation . . ¢ + & ¢ ¢ 4« ¢ ¢ o .
Test Method . . . ¢« ¢ ¢« ¢ ¢ ¢« o« o o &
Test Site & ¢ ¢ ¢ 4 ¢ ¢ ¢« o o o s o &

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

.

. L] . .
W W w ww

—_— s = .
[]
EFwwmn

w W ww
| ()

i
D VITNONON 2

]
@D OOy

—

CHAPTER 1

INTRODUCTION

-
’

This Validation Summary Report (VSR)~ describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

— —— -~
Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between imp-ementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
narticular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report. -

The information in this report is derived from the test results producec
during wvalidation testing. The validation process includes subzitting =
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. —The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testi:.g performed on an
Ada compiler. Testing was carried out for the following purposes:

1=1

"INTRODUCTION

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization {AVO).
On-site testing was completed 13 January 1989 at Madison WI.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. 1In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this rep>rt do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has nc nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joir* Frogram Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH U45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-2

INTRODUCTION

1.3 REFERENCES

Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

Ada Compiler Validation Capabilitv User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. . These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD~-1815A, February 1983 and ISO 8652-1987.

The agency requesting valid=+inan.

The Ada Validation Faeility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AV0 has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objéctive, or contains illegal or erroneous use of the

language.

* 5 ACVC TEST CLASSES

Conformity to the Ada Standard 4is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation err~s..s.
Class L tests are expected to produce errors because of the way in which =&
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to, check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class 4 test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal 1language usage.
Class B tests are not executable. Each test in this class is compiiesd and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

CTlass C tests check the run time system to ensure that legal Ada programs
can be correctly compiled -4 executed. Each Class C test is self-checking
and produces a PASSED, Ff :D, or NOT APPLICABLE message indicating the
result when it is executec.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an 4implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it 1is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs :~volving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attemrt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two lidrary units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
nrovides the mechanism by which executable tests report PASSET, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

TINTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is wvalidated. A test that |is
inapplicable for one validation 1is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, the-efore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CEAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under
following configuration:

Compiler: JANUS/Ada 2.1.1

ACVC Version: 1.10

Certificate Number: 890113W1.10022

Host Computer:

Machine: Compaq Deskpro 386/25

Operating System: MS DOS 3.31
with Pharlap Dos Extender

Memory Size: 3072 Kbytes

Target Computer:
Machine: Compaq Deskpro 386/25

Operating System: MS DOS 3.31
with Pharlap Dos Extender

Memory Size: 3072 Kbytes

the

CONFIGURATION INFORMATION

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D2900X.)

(2) The compiler correctly processes tests containing loop
statements nested to 17 levels. (See tests DS5A03A..H (8
tests).)

(3) The compiler rejects tests containing block statements nested
to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests DO6UOOSE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. {See
tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated an. the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressicns, test results indicate the following:

(1) Not all of the default initialization expressions for recc--
components are evaluated before any value 1is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performec with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no e~ .'Z bits for extra range. (See test C35903A.)

2-2

(3) The method used for rcundin
_

CONFIGURATION INFORMATION

(4) NUMERIC_ERROR is raised when a literal operand in a comparison

is outside the range of predefined Integer, when a literal
operand in a membership test 1is outside the range of
predefined Integer, when a literal operand in a comparison is
greater than SYSTEM.MAX_ INT, when a 1literal cperand in a
membership test 1s greater than SYSTEIM.MAX INT and no
exception is raised when a literal operand :n a comparison is
outside the range of the integer type's base type. (See test
cus2324.)

(5) NUMERIC_ERROR is raised when a 1literal operand in a fixed

point membership test is outside the range of the base type
and no exception is raised when a literal operand in a fixed
point comparison is outside the range of the base type. (See
test C452524.)

(6) Underflow is gradual. (See tests CUSS24A..Z (26 tests).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from

zero. (See tests CU60124..Z (26 tests).)

(2) The method used for rounding to longest integer is round away

from zZero. (See tests CU460124..Z (26 tesss).)

i universal
est CUADTILA,)

er In stat
-
s

14
ern, {(See

real expressions I1s rsun

Array types.

An implementation is allowed to rzise NUMERIC_ERRCR or
CONSTRAINT_ZRROR for an array having a 'LUENGTH that exceeds
STANDARD.I ITEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (Clee test
C36003A.)

CONFIGURATION INFORMATION

.

(2)

(3)

(4)

(5)

(7

(8)

CONSTRAINT_ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C362024.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a2 'LENGTH exceeding INTEGER'LAST
raises STORAGE_ERROR when the array objects are declared.
(See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

A null array with one dimension of 1length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression 1is
not evaluated in its entirety before CONSTRAI I_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C520134.)

Discriminated types.

(1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C520134.)

Aggregates.

(1N

In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are made as choices
are evaluated. (See tests C43207A4 and C43207B.)

2-4

CONFIGURATION INFORMATION

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test EU3212B.)

(3) CONSTRAINT_ERROR is raised before all choices are evaluated
whern a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.

(1) The pragma INLIE is not supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA10124, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA10124.)

o~
un
~

Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

{8) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC320%D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

(9) Generic unit bocdies and their subunits can be compiled in
separate compilations. (See test CA30114.)

CONFIGURATION INFORMATION

3.

Input and output.

(M

(2)

(3)

(4)

(5)

(6)

(7

(8)

(9)

(10)

(1)

(12)

(13)

(14)

The package SEQUENTIAL_TIO ~an be instantiated with
unconstrained array types and record types with diseriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO can be instantiated wit unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2U401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and I OUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files. {See
tests CE3102E and CE3102I..K (3 tests).)

RZSET and DELETE operations are supported for SEQUENTIAL IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CEI104C, CE21104, and
CE31144A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequentizl files are not given names and not deleted
when closed. (See test CE2108A4.)

Temporary direct files zre not given names and not deleted
when closed. (See test CE2108C.

Temporary text {iles are not given names and not deleted when
closed. (See test CE3112A.)

Only one internal file can be associated with each external
file for sequential files when at least one of the internal
files has write access. (See tests CE2107A..E (5 tests),
CE2102L, CE2110B, and CE2111D.)

Only one internal file can be associated with each external
file for direct files when at least one of the internal files
has write access. (See tests CE2107F..H (3 tests), CE2110D
and CE2111H.)

2-6

CONFIGURATION INFORMATION

(15) Only one internal file can be associated with each external
file for text files when at least one of the internal files
has write access. (See tests CE3111A..E (5 tests), CE3114B,

and CE31154A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AVT
determined that 380 tests were inapplicable to this implementation. A1
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precisicn exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 37 tests were required to successfully demonstirate the test objective.
(See secticn 3.8.)

The AVF concludes that the testing results demonstrate acceptable
conformity ¢o the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D = L

Passed 128 1131 1959 10 2¢ uL 2305

Tnapolicable 1 7 358 7 5] 2 380

Withdrawn 1 2 33 0 0 C 36

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 y 5 6 7 8 Q 10 11 12 13 14

Passed 199 576 544 240 170 99 160 332 131 3¢ 251 281 282 3307
N/A M 73 136 8 2 0 6 1 6 0 1 9y 29 380
Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 y 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Versicn 1.10 at the time of
this validation:

A39005G B97102E BC3009B CD2462D CD2A63A..D CD2A66A..D
CD2A73A..D CD2AT6A..D CD2A81G CD2A83G CD2A84M..N CD50110
CD2B15C CD7205C CD50078 CD7105A CD7203B CD7204B
CD7205D CE21072I CE3111C CE33014 CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TEST

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. OJthers may
depend on the result of another test that is either inapplicable cor
withdrawn. The applicability of a test to an impiementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 380 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y {1l tests)

C35706L..Y (14 tests) C35707L..Y (14 tests)

C35708L..Y (14 tests) €3%802L..Z (135 tests)
3-2

TEST INFORMATION

cis241L..Y (14 tests) C45321L..Y (14 tests)
C4s821L..Y (14 tests) ClU5521L..Z (15 tests)
Cc4s5524L..Z (15 tests) C45621L..Z (15 tests)
Cus5641L..Y (14 tests) C46012L..Z (15 tests)

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 30 tests are not applicable because this
implementation does not support 'STORAGE_SIZE representation
clauses for access types:

A39005C c87862B CD1009J CD1009R CD1009S
CDh1C03C CD2A83A CD2A83B CD2A83C CD2A83E
CD2A83F CD2A84B CD2A84C CD2A84D CD2A8BUE
CD2ABYF CD2A84G CD2ABY4H CD2ABHI CD2ABYK
CD2A84L CD2B11B CD2B11C CD2B11D CD2B11E
CD2B11F CD2B11G CD2B15B CD2B16A ED2A864A

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_INTEGER:

C45231B CU5304B C45502B C45503B CU5504B
C45504E Cu5611B Cli5613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CDT101E

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_I KNEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-~point ¢type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CU5531M..P (U4 tests) and CU553M..P (U4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA i:s less than 32.

DSS5A03E..H (4 tests) use 31 levels of loop nesting which exceeds
the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

D6UOOSF. .G (2 tests) are not applicable Dbecause this
implementation does not support nesting 10 levels of recursive
procedure calls.

3-3

[
.

_—

TEST INFORMATION

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

LA3004A, LA30OOUB, EA300UC, EA3004D, CA300UE, and CA3004F are not
applicable because this implementation does not support pragma
IN’UINF.- .

CC1222A zontains an expressior that is expected to be static, but
which this implementation treats as non-staticj; thus, this
implementation raises an exception rather than providing exact
evaluation. The AVO agreed that this issue of staticness within a
generic unit requires further review.

The following 51 tests are not applicable because this
implementation does not support 'SIZE representation clauses for
floating point, one dimensional array, and record types:

CD1009C CD2AK1A CD2A41B CD2AK1E CD2AK24A
CD2AU2B CD2A42C CD2A42D CD2A42E CD2AKU2F
CDh2AaU2G CD2AU2H CD2A421 CD2AL2J CD2461A
CD2A61B CD2461C CD2461D CD2A61F CD2A61H
CD2A611 CD2A61J CD2A61K CD2A61L CD2A62A
CD2A62B CD2A62C CD2A64A CD2A64B CD2AbBUC
CD2A64D CD2465A CD2465B CD2A65C CD2A65D
CD2A71A CD2AT1B CD2ATIC CD2AT1D CD2AT2A
CD2A72B CD2AT2C CD2AT2D CD2ATUA CD2ATHB
CD2ATH4C CD2ATUD CD2AT5A CD2ATSB CD2AT75C
CD2AT75D .

The following 13 tests are not applicable because this
implementation does not support record representation clauses:

CD1009N CD1009X CD1009Y CD1009Z CD1CO3H
CD1CO4E CDU031A CD4O4 1A CD40514A CD4051B
CD4051C CDU051D ED1DO4A

CE2102D..F (2 tests), CE2102I..J (2 tests), CE2102N..W (10 tests),
CE3102E..G (3 tests), and CE3102I..K (3 tests) are not applicable
because this implementation supports CREATE (all modes), OPEN (all
modes), and RESET (to the same mode) for sequential, direct, and
text files.

CE2107B..E (4 tests), CE2107L, CE2110B, CE2111D, CE2107G..H (2
tests), CE2110D, CE2111H, CE3111B, CE3111D..E (2 tests), CE3114B,
and CE3115A are not applicable because this implementation does
not permit the association of multiple internal files with the
same external file when one of the internal files has write access
to the external file. The proper exception 1is raised when
multiple access is attempted.

-

TEST INFORMATION

's. EE2201D and EE2401D are not applicable because USE_ERROR is raised
when trying to create a file with unconstrained array types.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection: splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 37 tests.

The following tests were split because svntax errors at one point resul:
in the compiler not detecting other errors in the test:

[{]
9]

B22003A B24007A B24009A B250024 B260054 B270054
B29001A B371064 BY49002A BUQOOS5A B51001A B530034
B55A014 B63001A B63001B B91001H BA1101A BA1101C
BA1101E BA30064A BA30063 BA3007B BA300%A 3£30088
BA3013A BC2001D BC2001E BC30053 CC360A

The following modifications were made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVO, a "PRAGMA ELABORLATE (R
was added at the beginning of C390054 <c ensure ¢
elaboration of the routines in package REPORT tares place
these routines are called.

b. At the recommendation of the AVD, the wvariables V anZ W on line &
of test CD2C11A were initialized to 5.0 due to PROGRAM_ERROR being
raised when an attempt is made to use the uninitialized variables.

c. At the recommendation of the AVO, LONG_INTEGER'IMAGE was
substituted for INTEGER' IMAGE in test ED7006C since
SYSTEM.MEMORY SIZE is outside the range of INTESER for this
implementation.

d. At the recommendation of the AVO, the lines which check whether

temporary files can be created in tests CE2108B, CE2108D, and
CE3112B were commented out because of the way in which temporary

3-5

ﬂ--------------IIIIIIIIIIIIIIIIJ

TEST INFORMATION

file names are constructed.

The following tests were graded using a modified evaluation criteria:

a. In test C34006D, the meaning of 'SIZE applied to a type 1is not
clear. The test is graded PASSED provided the only failure
messages arise from the requirements on the value of T'SIZE, where
T is a type.

b. CE3804G writes, then reads, a floating-point literal and tests the
input value against a textually identical 1literal; this
implementation stores the numeric literal with greater precision
than it wuses for objects of the type, and because the literal is
not a model number the test for equality at line 121 fails. The
AVO ruled that CE3804G should be counted as passed, for all of its
other checks were passed.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the JANUS/Ada 2.1.1 compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated ¢that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the JANJS/Ada 2.1.1 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in
whic k the testing was performed is described by the following designations
of hardware and software components:

Host computer: Compaq Deskpro 386/25

Host operating system: MS DOS 3.31 with Pharlap Dos Extender
Target computer: Compaq Deskpro 386/25

Target operating system: MS DOS 3.31 with Pharlap Dos Extender
Compiler: JANUS/Ada 2.1.1

A set of U5 diskettes containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
diskettes. Tests requiring modifications during the prevalidation testing

3-6

TEST INFORMATION

were included in their modified form on the diskettes.

The contents of the diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, 1linked, and all executable tests were run on the Compaq Deskpro
386/25. Results were printed from the host computer.

The compiler was tested using command scripts provided by R.R. Software,
Inec. and reviewed by the validation team. The compiler was tested using
the following default option settings:

OPTION EFFECT
/B Error messages are verbose.
/F Library calls are generated for floating

point operations.

/L No listing file is generated.
/0 Memory model 0 is used.
/R The JRL file is put on the same disk as the
input file.
/X) Extra symbol tabie information is not generated.
/2 Optimization is done only where so specified
by pragmas.

The folliowing option settings were used instead of the defaults:

OPTION EFFECT
/Q Quiet error messages - suppresses user prompting
on errors.
/W Aarnings off - warnings were suppressed mainly

because of the confusing warnings that the
validation tests produce.

/T Trimming code on - this directs the compiler to
generate code which allows the linker to trim
unused subprograms.

/D Debugging code off -~ this directs the compiler
not to generate any debugging code (generally
line numbers & walkbacks).

/SF Used to re-direct the compiler scratch files

3-7

TEST INFORMATION

into a RAM disk (disk F), thus speeding up the
compiles.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilatioca listings, and job logs were captured on

diskette and archived at the AVF. The listings examine” on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Madison WI and was completed on 13 January 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc. has submitted the following
Declaration of Conformance concerning the JANUS/Ada
2.1.1 compiler.

DECLARATION OF CONFORMANCL

Compiler Implementor: R.R. Software Inc.
Ada®Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Versiom: 1.10

Base Configuration

Base Compiler Name: JANUS/Ada Version: Version 2.1.1
Bost Architecture ISA:Compaq Deskpro 386/25 OS&VER #: MS.DOS 3.31/Phar Lap
Target Architecture ISA:Compaq Deskpro 386/25 QS&VER #: MS DOS 3.31/Phar Lap

Implementor's Declaration

I, the undersigned, representing R.R. Software Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that R.R. Software Inc. is
the owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in oconformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's

corporate name.

LT i

-R. Softwar€ Inc.
James A. Stewart, General Manager

Owner's Declaration

1, the undersigned, representing R.R. Software Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Acda trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A4.

/

Dat £ /{;:fch

rd

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A=2

AVF Control Number: AVF-VSR-219.0589
. 88-09-23-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890113w1.10019
R.R. Software, Inc.
JANUS/Ada 2.1.1
Compaq Deskpro 286 Host and Target

Completion of On-Site Testing:
13 January 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH U5433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Appendix F: Implementation Dependencies
Y
F Implementation Dependencies

This appendix specifies certain system-dependent charactenst\cs of JANUS'Ada,
version 2.1.1, for an 80x86 target system.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragmas, JANUS/Ada also provides several others.
Some of these pragmas have a textual range. Such pragmas set some value of
importance to the compiler, usually a flag that may be On or Off. The value to be
used by the compiler at a given point in a program depends on the parameter of
the most recent relevant pragma in the text of the program. For flags, if the
parameter is the identifier On, then the flag is on; if the parameter is the
identifier Off, then the flag is off; if no such pragma has occurred, then a default
value is used.

The range of a pragma - even a pragma that usually has a textual range - may
vary if the pragma is not inside a compilation unit. This matters only if you put
multiple compilation units in a file. The following rules applyv:

1) If a pragma is inside a compilation unit, it affects only that unit.

2) If a pragma is outside a compilation unit, it affects all following

compilation units in the compilation.

Certain required Ada pragmas, such as INLINE, would follow different rules;
however, as it turns out, JANUS/Ada ignores all pragmas that would follow
different rules. :

The following syvstem—-dependent pragmas are defined by JANUS’Ada. Unless
otherwise stated, they may occur anywhere that a pragma may occur.

ALIL_CHECKS Takes one of two identifiers Cn or Cff as its argument, and has a
textual range. If the arzument 1is Off, then this pragma causes
suppression of arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK - see below),
storage error checking, and elaboration checking. If the argument is
On, then these checks are all performed as usual. Note that pragma
ALL_CHECKS does not affect the status of the DEBUG pragma; for the
fastest run time code (and the worst run time checking), both
ALL_CHECKS and DEBUG should be turned Off and the pragma
OPTIMIZE (Time) should be used. Note also that ALL_CHECKS dces not
affect the status of the ENUMTAB pragma. Combining check
suppression using the pragma ALL_CHECKS and using the pragma
SUPPRESS may cause unexpected results; it should not be done.

e

B-2

Appendix F: Implementation Dependencies

'

However, ALL_CHECKS may be combined with the JANUS/Ada pragmas
ARITHCHECK and RANGECHECK; whichever relevant pragma has
occurred most recently will determine whether a given check Is
performed. ALL_CHECKS is on by default. Turning any checks off mayv
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an
exception may expect results that will not occur if no checking is
done.

ARITHCHECK Takes one of the two identifiers On or Off as {ts argument, and has a

LEANUP

textual range. Where ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for situations where it is
permitted to raise NUMERIC_ERROR; these checks include overflow
checking and checking for division by zero. Combining check
suppression using the pragma ARITHCHECK and using the pragma
SUPFRESS may cause unexpected results; it should not be done.
However, ARITHCHECK ma)y be combined with the JANUS’Ada pragma
ALL_CHECKS; whichever pragma has occurred most recently will be
effective. ARITHCHECK is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an
exception may expect results that will not occur if no checking is
done. !

Takes an integer literal in the range 0..3 as its argument, and has a
textual range. Using this pragma allecws the JANUS’Ada run-time
system to be Jess than meticulous about recovering temporary memory
space it uses. This pragma can allow for smaller and faster code, but
can be dangerous; certain constructs can caise memorys to be used up
very quickly. The smaller the parameter, the more danger is parmitted.
A value of C - the default value - causes the run-time system to be
its usual Immaculate self. A value of € causes no reclamation of
temporary space. Values of 1 and 2 allow compromising between
"cleanliness” and speed. Using values other than 2 adds some risk cf
your program running out of memory, especially in loops which contain
certain constructs.

B-3

DEBUG

ENUMTAB

Appendix F: Implementation Dependencies
}

Takes one of the two identifiers On or Off as Its argument, and has a
textual range. This pragma controls the generation of line number
code and procedure name code. When DEBUG is on, such code is
generated. When DEBUG is off, no line number code or procedure
names are generated. This information is used by the walkback which
is generated after a run-time error (e.g., an unhandled exception).
The walkback is still generated when DEBUG is off, but the line
numbers will be incorrect, and no subprogram names will be printed.
DEBUG's initial state can be set by the command line; if no explicit
option is given, then DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of JANUS/Ada's power in
describing run-time errors.

Notes:
DEBUG sh%ould only be turned off when the program has no errors. The
information provided on an error when DEBUG is off is not very
useful.

If DEBUG 1is or at the beginning of a subprogram or package
specification, then it must be on at the end of the specification.
Conversely, if DEBUG is off at the beginning of such a specification,
it must be off at the end. If you want DEBUG to be off for an entire
compilation, then you can either put a DEBUG pragma in the context
clause of the compilation or you can use the appropriate compiler
option.

Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of enumeration ,
tables. Enumeration tables are used for the attributes IMAGE, VALUE,
and WIDTH, and hence to input and ocutput enumeration values. The
tables are generated when ENUMTAB is on. The state of the ENUMTAB
flag is significant only at enumeration type definitions. If this pragma
is used tc rprevent generation of a type's enumeration tables, then
using the three mentinoned attributes causes an erronecus program,
with unpredictable results; furthermore, the tvpe should nct be used
as a generic actual discrete tipe. and in particular
TEXT_IC.ENUMERATION_T0 should not he instantiated for the type. If
the enumeratisn type is not needed for any of these purpcses, the
tables, which use a lot of space, are unnecessary. ENUMTAB is on by
default.

Appendix F: Implementation Dependencies

PAGE_LENGTH

This pragma takes a single integer literal as its argument. It sa)s
that a page break should be added to the listing after each
occurrence of the given number of lines. The default page length is
32000, so that no page breaks are generated for most programs. Each
page starts with a header that looks like the following:

JANUS/ADA Version 2.1.1 compiling file on date at time

RANGECHECKTakes one of the two identifiers On or Off as its argument, and has a

SYSLIB

VER

D
0N

Aol
[

textual range. Where RANGECHECK {s off, the compiler is permitted to
(and generally does) not generate checks for situations where it is
expected to raise CONSTRAINT_ERROR; these checks include null
pointer checking, discriminant checking, index checking, array length
checking, and range checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, RANGECHECK may
be combined with the JANUS/Ada pragma ALL_CHECKS; whichever
pragma has occurred most recently will be effective. RANGECHECK is
on by default. Turning any checks off may cause unpredictable results
if execution would have caused the corresponding assumption to be
violated. Checks should be off only in fully debugged and tested
programs. After checks are turned off, full testing should again be
done, since any program that handles an exception may expect results
that will not occur if no checking 'is done.

This pragma tells the compiler that the current unit is one of the
standard JANUS‘Ada system libraries. It takes as a parameter ak
integer literal in the range 1 .. 15; only the values 1 through 4 are.
currently used. For example, system library number 2 provides floating
point support. Do not use this pragma unless you are writing a
package toc replace one of the standard JANUS’Ada system libraries.

Takes On cr Cff as its argument, and has a textual range. VERBOSE
controls the amount of output on an errcr. If VERBOSE is on, the two
lines preceding the error are printed, with an arrow pointing at the
error. If VERBOSE is off, only the line number is printed.
VERBOSE(Of):

Line 16 at Position S
ERROR Identifier is not defined

B-5

Appendix F: Implementation Dependencies

‘
VERBOSE(On):

15: if X = 10 then
16: Z := 10;

ERROR Identifier is not defined

The reason for this option is that an error message with VERBOSE on
can take a long time to be generated, especially in a large program.
VERBOSE's initial condition can be set by the compiler command line.

Several required Ada pragmas may have surprising effects in JANUS’Ada. The
FRIORITY pragma may only take the value 0, since that is the only value in the
range System.Priarity. Specifying any OPTIMIZE pragma turns on optimization;
otherwise, optimization is only done if specified on the compller's command line.
The SUPPRESS pragma is ignored unless it only has one parameter. Also, the
following pragmas are always ignored: CONTROLLED, INLINE, MEMORY_SIZE, PACK,
SHARED, STORAGE_UNIT, and SYSTEM_NAME. Pragma CONTROLLED is always ignored
because JANUS/Ada does no automatic garbage collection; thus, the effect of
pragma CONTROLLED already applies to all access types. Pragma SHARED is
similarly ignored: JANUS’Ada's non-preemptive task scheduling gives the
appropriate effect to all variables. The pragmas INLINE, PACK, and SUPPRESS (with
two parameters) all provide recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORY_SIZE, STORAGE_UNIT, and
SYSTEM_NAME all attempt to make changes to constants in the System package; in
each case, JANUS/Ada allows only one value, so that the pragma is ignored.

F.2 Implementation Dependent Attributes

TJANUS'Ada does not provide any attributes other than the required Ada
attributes.

F.3 Specification of the Package SYSTEM

The package System for JANUS. Ada has the following definition.

B-6

Appendix F: Implementation Dependencies

package System is
-- System package for JANUS/Ada

-- Types to define type Address.
type Word is range 0 .. 65536;
for Word'Size use 16;
type Offset_Type is new VWord;
type Address is record
Offset : Offset_Type;
Segment : VWord;
end record;
Function "+" (Left : RAddress; Right : Offset_Type) Return Address;
Function "+" (Left : Offset_Type; Right : Address) Return Rddress;
Function "-" (Left : Address; Right : Offset_Type) Return Address;
Function "-" (Left, Right : Address) Return Offset_Type;

type Name is (MS_DOCS2);
System_Name : constant Name := MS_DOS2;

Storage_Unit : constant := 8;

liemory_Size : constant := €5536;
-- Note: The actual memory size of a program is determined
-- dynamically; this is the maximum number of bytes in the data
-~ segnent.

-- System Dependent Named Numbers:
Kin_Int : constant := -2_147_483_64¢2;
Yax_Int : constant := 2_147_483_647;
Max_Digits : comnstant := 1%;
Yax_lMantissa : constant := 31;
Fine_Delta : constant := 2%1.0§E-31;
-- equivalently, 4.656612873077392578125E-1C

Tick : constant := 0.01; -- Some machines have lzss accurzcy;
-- for example, the IBM PC actually ticks about
-- every 0.06 seconds.

~- Other System Dependznt Declarations
subtype Priority is Integer range C..0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

B-7

Appendix F: Implementation Dependencies

]

end Systen;

The type Byte in the System package corresponds to the 8-bit machine byte. The
type Word is a 16-bit Unsigned Integer type, corresponding to a machine word.

F.4 Restrictions on Representation Clauses

If T is a discrete type, or a fixed point type, then the size expression can give
any value between 1 and 1000 bits (subject, of course, to allowing enough bits for
every possible value). For other types, the expression must give the default size
for T.

A length clause that specifies T'STORAGE_SIZE for an access type 1is not
supported; JANUS/Ada uses a single large common heap.

A length clause that specifies T'STORAGE_SIZE for a task tvpe T is supported.
Any integer value can be specified. Values smaller than 256 will be rounded up to
256 (the minimum T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type must give a value
{subject to the Ada restricticns) in the range

2.0 ** (-99) .. 2.0 *x g9,
inclusive.

An enumeration representation clause for a type T may give any integer values
within the range System.Min_Int .. System.Max_Int. If a size length clause is not
given for the type, the type's size is determined from the literals given. (If al! ¢f
the literals fit in a byte, then Bite'Size is used; similarly for Integer and
Longz_Integer).

The expression in an aliznment clause in a record representation clause must
equal 1.

A component clause must zZive a storage place that is eqguivalent to the default
value of the POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to orie less
than the size of the component.

B-8

Appendix F: Implementation Dependencies

-i
JANUS,’Ada supports address clauses on most objects. Address clauses are not
allowed on parameters, generic formal parameters, and renamed objects. The
address given for an object address clause may be any legal value of type
System.Address. It will be interpreted as an absolute machine address, using the
segment part as a selector if in the protected mode. It is the user's responsibility

to ensure that the value given makes sense (i.e., points at memory, does not
overlay other objects, etc.) No other address clauses are supported.

F.5 Implementation Defined Names
JANUS/’Ada uses no implementation generated names.
F.6 Address Clause Expressions

The address given for an object address clause may be any legal value of type
System.Address. It will be interpreted as an absolute machine address, using the
segment part as a selector if in the protected mode. It is the user's responsibility
to ensure that the value given malkes sense (i.e., points at memory, does not
overlay other ubjects, etc.)

F.7 Unchecked_Conversion Restrictions

We first make the following definitions:
A type or subtype is said to be a simple type or a simple subt:pe (respectively)
if it is a scalar (sub)type, an acress (sub)type, a task (sub)type, ar if it satisfies
the following two conditions:
1) If it is an array type or subtype, then it is ronstrained and its index
ronstraint is static; and
Z) If it is a composite type or subtype, then all of its subcomponents have a
simple subtype.

A (sub)type which does not meet these conditions is called non-simple.
Discriminated records can be simple; variant records can be simple. However,
constraints which depend on discriminants are non-simple (because they are
non-static).

JANUS/ Ada imposes the following restriction on instantiations of
Unchecked_Conversion: for such an instantiation to be legal, both the source

.

B-9

Appendix F: Implementaticn Depernderncies

)

actual subtype and the target actual subtype must be simple subtypes, and they
must have the same size.

F.8

Implementation Dependencies of 1/0

The syntax of an external file name depends on the operating system being used.
Some external files do not really specify disk files; these are called devices.
Devices are specified by special file names, and are treated specially by some of
the I/O routines.

The syntax of an MS-DOS 2.xx or 3.xx filename lis:
[d:][path]filename[.ext]

where "d:" is an optional disk name; "path" is an optional path consisting of
directory names, each followed by a backslash; "filename" is the filename
(maximum 8 characters); and ".ext" is the extension (or file type). See vour
MS-DOS manual for a complete description. In addition, the following special
device names are recognized:

STI: MS-DOS standard input. The same as Standard_Input. Input is buffered
by lines, and all MS-DOCS line editing characters may be used. Can
only be read.

STO: MS-DOS standard output. The same as Standard_Output. Can only be
written, N

ERR: MS-DOS standard error. The output to this device cannot be
redirected. Can only be written.

CON: The console device. Single character input with echoing. Dus to the
design of MS-DOS, this device can be redirected. Can be read and
written.

AUX: The auxiliary device. Can ba read or written.

LST: The list (printer) device. Can only %e written.

KED: The console input device. ¢ character interpretaticrn is performed,
and there is no character echo. Again, the input to this device can
be redirected, so it does not always refer to the physical keixheard.

The WMS-DCS device files may alsc be used (CON, AUX, and PRN without

colons ":'). For compatibility reasons, we do not recommend the use of these
names.

B-10

Appendix F: Implementatior Dependencies

’

The MS-DOS 2.xx version of the 1O system will do a search of the defaul:
search path (set by the DOS PATH command) if the following conditions are
met:

1) No disk name or path is present in the file name; and
2) The name is not that of a device.

Alternatively, yvou may think of the search being done if the file name does
not contain any of the characters "', '/', or "\'.

The default search path cannot be changed while the program is running, as
the path is copied by the JANUS’Ada program when it starts running.

Note:
Creates will never cause a path search as they must work in the current
directory.

Upon normal completion of a program, anyv open external files are closed.
Nevertheless, to provide portability, we recommend explicitly closing any files that
are used.

Sharing external files between multiple file objects causes the corresponding
external file to be opened multiple times by the operating system. The effects of
this are defined by your operating system. This external file sharinz is only
allowed if all internal files associated with a single external file are opened only
for reading (mode In_File), and no internal file is Created. Use_Error is raised if
these requirements are violated. A Reset to a writing mode of a file already
opened for reading also raise Use_Error if the external! file alse is shared by .
another internal file.

Binary 1’0 of values of access tiypes will give meaninzless resiults and should net
be done. Binary 170 of types which are not simple types f(see definition i{r Sertion
F.7, abeve) will raise Use_Error when the file is opened. Such tipes require
specification of the block size in the form, a capatility which is not yect
supported.

The form parameter for Sequential_TO and Direct_I0 is always experted to be the
null string.

The type Count in the generic package Direct_IO is defined to have the range C ..

32767.

Ada specifies the existence of special markers called terminators in a text file.
JANUS ’Ada defines the line terminator to be <LF> (line feed), with or without an

Appendix F: Implementatior Dependencies

’

additional <CR> (carriage return). The page terminator is the <FF> (form feed)
character; if it is not preceded by a <LF>, a line terminator is also assumed.

The file terminator is the end-of-file returned by the host operating svstem. If no
line and/or page terminator directly precedes the file terminator, they are
assumed. If the form "Z" is used, the <Ctrl>-Z character also represents the
end-of-file. This form is not necessary to correctly read files produced with
JANUS.’Ada and most other programs, but may be occasionally necessary. The only
legal forms for text files are "" (the null string) and "Z". All other forms raise
USE_ERROR.

If the form is "", the <Ctrl1>-Z character is ignored on input. The <(CR> character
is always ignored on input. (They will not be returned by Get, for instance). All
other contro] characters are sent directly to the user. Output of control characters
does not affect the layout that Text_IO generates. In particular, cutput of a <LF>
before a New_Page dues not suppress the New_Line caused by the New_Page.

On output, the "Z" form causes the end-of-file to be marked by a <Ctrl>-Z;
otherwise, no explicit end-of-file character is used. The character pair <CR> <LF>
is written to represent the line terminator. Because <CR> is ignored on input, this
is compatible with input.

The type Text_10.Count has the range 0 .. 32767; the type Text_I0.Field also has
the range 0 .. 32767,

IO_Exceptions.USE_ERRCOR 1is raised if something cannot be dcne because of the
external file system; such situations arise when one attempts: -
- to create or open an external file for writing when the external file is .
already open (via a different internal file).
- to create or open an external file when the external file is already open for
writing (via a different internal file).
- to reset a file to a writing mode when the external file is already open (via
a different internal file). '
- to write tc a full disk (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, ar delete a device;
- to create a file where a protected file (i.e., a directory or read-only file)
alrcady exists;
- to delete a protected file;
- to use an illegal form (Open, Create);
- to open a file for a non-simple type “I\.hOUu specifyving the tlock size;
- to open a device for direct 1/0.

-

B-12

——

Appendix F. Implementation Dependencies

[

10_Exceptions.DEVICE_ERROR is raised if a hardware error other than those
covered by USE_ERROR occurs. These situations should never occur, but may on
rare occasions. For example, DEVICE_ERROR is raised when:

a file is not found in a Clcse or a Delete;
a seek error occurs on a direct Read or Write; or
a seek error occurs on a sequential End_Of_File.

The subtypes Standard.Positive and Standard.Natural, used by some 1/0O routines,
have the maximum value 32767.

No package Low_Lev>l_IO is provided.

F.9

Running the compiler and linker

The JANUS’Ada compiler i{s invoked using the following format:

JANUS [d:] filename [.ext] {/option]

where filename is an MS’'DOS file name with optional disk name [d:], optional
extension [.ext], and compiler options {’option}. If no disk name is specified, the
current disk is assumed. If no extension is specified, .PKG is assumed.

The compiler options are:

B

D
F

Ld
Ox

Brief error messages. The line in error is not printed (equivalent tc turning
off pragma VERBOSE). '
Don't generate debugging code (equivalent te turning c¢ff pracma NDEEUG)

Use in-line 8087 instructions for Floating peint operations. By default the
compiler generates library ealls for floating point operations. The 8057 may
be used to execute the library ealls. A floating paint support library is still
required, even though this cption s used.

Create a listing file with name filename.PRYN on the same disk as lilename.
The listing file will be a listing of only the last compilation unit in a file.
Create a listing file on specified disk 'd’. Choices are 'A' through 'W'.

Object coda memory modal. ¥ is € or 1. Memery model C creates faster,
smaller code, but limits al! code in all units of a prozram to one MMS-DCS
segment (i.e., 64 Kkilohites); Memory model 1 allows code size limited only by
yvour machine and operatinz system. See the linker (JLINK) manual for more
information. NMemory model ¢ is assumed if this option is not given. The
compiler records the memory model for which each library unit was compiled,
and it will complain if any mismatches occur. Thus, the compiler enforces
that if it is run using the /ol option, then all of the withed units must
have bheen compiled with the same opticn.

B-13

Rd

Appendix F: Impiementation Dependencies

?

Quiet error messages. This option causes the compiler not to wait for the
user to interact after an error. In the usual mode, the compiler will prompt
the user after each error to ask If the compilation should be aborted. This
option is useful if the user wants to take a coffee break while the compiler
is working, since all user prompts are suppressed. The errors (if any) will
not stay on the screen when this option is used; therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many error messages for each
and every line in the program. A lot of paper could be used this way! Note
that the /Q option disallows disk swapping, even if the /S option is given.
Route the JRL file to the specified disk 'd'. Choices are 'A' through '¥'. The
default is the same disk as filename.

Route Scratch files to specified disk. This option is useful if vou have a
RAM disk or if your disk does not have much free space. The use of this
option also allows disk swapping to load package specification (.SYM) files.
Normally, after both the compiler and source file disks are searched for .SYM
files, an error is produced if they are not all found. However, when the /S
option is used, the compiler disk may be removed and replaced by a disk to
search. The linker has a similar option, which allows the development of
large programs on systems with a small disk capacity. Note that disk
swapping is not enabled by the /S option if the /Q (quiet option) is also
given. The /Q option is intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problem is that when the /S
option is used to put scratch files on a RAM disk, a batch file may stop
waiting for a missing .SYM or ERROR.MSG file; such behavior would not be
appropriate when /Q is specified.

Generate information which allows trimminz unused subprograms from the
code. This option tells the compiler to generate information which can be .
used by the remove subprograms from the firal code. This option increases
the size of the .JRL files produced. We recommend that it be used on
reusable libraries of code (like trig. libraries or stack packages) - that is
those compilations for which it is likely that some subpregrams are rnot
called.

Don't print any warning messages. For more contro} of warning messnges, use
the following option form (V).

Print only warninzs of level less than the specified dizit 'x’. The given
value of x may be from 1 to ¢. The more warnings you are willing to see,
the higher the number you shculd give.

Handle eXtra symbol table information. This option is for the use of the
JScope debugger and other tcols. This option requires large quantities of
memory and disk space, and thus should be avoided if possible.

Turn on optimization. This has the same effect as if the pragma OPTIMIZE
were set to SPACE throughout you- compilation.

B-14

1

Appendix F: Implementation Dependercies

The default values for the command line options are:

Error messages are verbose.

Debug code Is generated.

Library calls are generated for floating point operations.
No listing file is generated.

Memory model O is used.

The compiler prompts for abort after every error.

The JRL file is put on the same disk as the input file.
Scratch files are put on the same disk as the compiler.
No trimming code is produced.

All warnings are printed.

Extra symbol table information is not generated.
Optimization is done only where so specified by pragmas.

N/ A 3o 0r10w

Leading spaces are disregarded between the filename and the call to JANLUS.
Spaces are otherwise not recommended on the command line. The presence of
blanks to separate the options or between the filename and the extension will be
ignored.

Examples:
JANUS test/Q/L
JANUS test.run/w4
JaNUS test
JANUS test .run /B /W/L

The compiler produces a SYM (SYMbol table information) file when a specification
is compiled, and a SRL or JRL (Specification Relocatable or Janus Relocatable) file
when a body is compiled. To make an executable program. the appropriate ST and
JRL files must be linked (combined) with the run-time libraries. This s
accomplished by running the JANT'S Ada linker, JLINK.

The JANTS ’Ada linker is involked using the fcllowing format:

rr vy

SLINK [d:) filename {/ogtion!

Here "filename" is the name of the SRL or JRLU file created when the main program
was ccmpiled (without the .SRL cor .JRIL extensian) with epticnal disk name [d:},
and compiler options {’option}. The filename usually corresponds tc the first eight
letters of the name of your main program. A disk may be specified where the files
are to be found. See the linker manual for more detailed directions. We summarize
here, hewever, a few of the most commonly used linking options:

B-15

Appendix F: Implementation Dependencies

E Create an ENE file. This is assumed if the /01 option is given. This allous
allow a slightly larger total program size if memory model is used.

FO Use software floating point (the default),

F2 Use hardware (8087) floating point.

L Display lots of information about the loading process.

00 Use memory model 0 (the default); see the description of the /O option in
the compiler, above.

01 Use memory model 1.

Q Use qulet error messages; i.e., don't wait for the user to interact after an
error.

T Trim unused subprograms from the code. This option tells the linker to

remove subprograms which are never called from the final output file. This
option reduces space usage of the final file by as much as 30K.

Examples:
LINK test
JLINK test /Q/L
JLINK test/01/L/F2

Note that if vou do not have a hardware floating point chip, and if vou are using
memory model 0, then you generally will not need to use any linker options.

Appendix F: Implementation Dependencies

This page intenticnally left blank

B-17

APPENDIX C

TEST PARAMETERS

fertain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC_SIZE 32
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

tYpe.

$BIG_ID1 1..19
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

O

=> 'A4',200 => '

$BIG_ID2 144199 => 41,200 => '2°
An identifier the size of the
maximum input line lersth which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 1..99 => 'A',100 => '3',101..200 => 'A!
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning

$BIG_IDA
An identifier the size of ‘the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT LIT
An integer 1literal of value 298
with enough leading 2zeroes so
that it 1is the size of the
maximum line length.

$BIG_REAL_LIT

A universal real 1literal of

value 690.0 with enough leading

zeroes to be the size of the

maximum line length.
$BIG_STRING1

A string literal which when

catenated with BIG STRING2

yields the image of BIG_ID1.
$BIG_STRING2

A string 1literal which when

catenated to the end of

BIG_STRING1 yields the image of

BIG_ID1.
$BLANKS

A sequence of blanks twenty

characters 1less than the size

of the maximum line length.
$COUNT_LAST

A universal integer

literal whose value is

TEXT_IO.COUNT'LAST.
$DEFAULT_MEM_ SIZE

An integer literal whose value

is SYSTEM.MEMORY_SIZE.
$DEFAULT_STOR_UNIT

An integer literal whose value

is SYSTEM.STORAGE_UNIT.

Value

1..99 => 'A',100 => '4',101..200 => 'A"

1..197 => '0',198,.200 == "298"

1..194 => '0',195..200 => "69.0E1"

1 2> 1M1 2,,101 => 'A1,102 => '
12> ' 2,,100 => 'A',101

1..180 =>

32_767

65536

=> 11,102 => M

Name and Meaning

$DEFAULT_SYS_NAME

The value of the constant
SYSTEM.SYSTEM _NAME.

$DELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or

LONG_FLOAT.

$GREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL_ EXTERNAL FILE NAME1
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAME2
An external file name which
is too 1long.

$INTEGER_FIRST
A universal
whose value is

integer 1literal
INTEGER'FIRST.

TEST PARAMETERS

Value
ya. %

MS_DOS2

0.000_000_000 465 661_287_307_739_257_812_5

32_767

NOT_APPLICABLE

NOT_APPLICABLE

300_000.0

1.0E6

\NODIRECTORY\FILENAME

<BAD| ">

-32768

c-3

TEST PARAMETERS

Name and Meaning

$INTEGER_LAST
A universal integer 1literal
whose value is INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION,

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC .
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer 1literal
whose value is SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.MAX_INT+1.

$MAX_LEW_INT_BASED_LITERAL
A universal integer based
literal whose value is 2#11#
with enough 1leading zeroes in
the mantissa to be MAX_IN_LEN
long.

C-4

Value

32767

32768

-305_000.0

3

15

200

2147u83647

2147483648

1..2 => "2:",3-0197 = '0"
198..200 => "11:"

Name and Meaning

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading 2zeroes in the
mantissa to be MAX_IN LEN long.

$MAX_STRING_LITERAL
A string literal of
MAX_IN _LEN, including the
characters.

size
quote

$MIN_INT
A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.
$NAME LIST
A list of enumeration 1literals
in the type SYSTEM. NAME,
separated by commas.

$NEG_BASED_INT
A based integer literal whose

highest order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAX_INT.

$NEW_MEM_SIZE
An integer literal whose value
is a permitted argument for

pragma MEMORY SIZE, other than
$DEFAULT MEM_SIZE. If there 1is
no other value, then use

$DEFAULT_MEM_SIZE.

TEST PARAMETERS

Value

1..3 => "16:",4,,196 => '0°',
1970 0200 => "FOE:"

1 2> ™1,2,,199 => 'A',200 => '

-2147483648

32

NOT_APPLICABLE

MS_DOS2

16#FFFF_FFFF#

65536

2N

TEST PARAMETERS

Name and Meaning Value

$NEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

$NEW_SYS_NAME MS_DOS2
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS NAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01
A real literal whose value is
SYSTEM.TICK.

c-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

a. A39005G has been withdrawn because it unreasonably expects a
component clause to pack an array component into a minimum size
(1ine 30).

b. BY97102E has been withdrawn because it contains an unintended
jillegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

c. BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal with res=srcct to the
units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

d. CD2A62D has been withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be 40 (line 137).

e. CD2A63A..D, CD2A66A..D, CD2AT3A..D, CD2A76A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE 1length clause is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE 1length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

f. CD2A81G, CD2AB3G, CD2A8MM and N, and CD50110 have been withdrawn
because they assume that dependent tasks will terminate while the
oain program executes a loop that simply tests for task
termination; this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,

D-1

J——M

"l 0‘

WITHDRAWN TESTS

respectively).

CD2B15C and CD7205C have been withdrawn because they expect that a
'STORAGE_SIZE length clause provides precise control over the
number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD5007TB has been withdrawn because it wrongly expects an
implicitly declared subprogram to be at the the address that is
specified for arn unrelated subprogram {(line 303).

CD7105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it 4is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203b and CDT204B have been withdrawn because they use the 'SIZE
length clause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a ta§k's activation as though it were like the specification
of storage for a collection.

CE2107I has been withdrawn because it requires that objects of two
similanr scalar types be distinguished when read from a
file~--DATA_ERROR is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered valid. (line 90)

CE3111C has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

CE3301A has been withdrawn because it contains several calls ¢to
END_OF_LINE and END _OF PAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARD_INPUT
(lines 103, 107, 118, 132, and 136).

CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUT_ERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and ¢the test would thus encumber
validation testing.

